Abstract

New theoretical evolutionary sequences of models for stars with low metallicities, appropriate to the Small Magellanic Cloud, are derived with both standard Cox-Stewart opacities and the new Rogers-Iglesias opacities. Only those sequences with little or no convective core overshooting are found to be capable of reproducing the two most critical observations: the maximum effective temperature displayed by the hot evolved stars and the difference between the average bolometric magnitudes of the hot and cool evolved stars. An upper limit to the ratio of the mean overshoot distance beyond the classical Schwarzschild core boundary to the local pressure scale height is set at 0.2. It is inferred from the frequency of cool supergiants in NGC 330 that the Ledoux criterion, rather than the Schwarzschild criterion, for convection and semiconvection in the envelopes of massive stars is strongly favored. Residuals from the fitting for NGC 330 suggest the possibility of fast interior rotation in the stars of this cluster. NGC 330 and NGC 458 have ages of about 3 x 10 exp 7 and about 1 x 10 exp 8 yr, respectively.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.