Abstract

The effects of semiconvective mixing are investigated in evolutionary sequences of models for stars of 10, 15, and 30 solar masses with four different initial chemical compositions. The models are constructed using the Ledoux criterion for both the definition of convective instability and the state of convective neutrality assumed to be attained in regions with a gradient of mean molecular weight. It is shown that semiconvection is nonexistent at 10 solar masses, of minor importance at 15 solar masses, but covers most of the intermediate zone at 30 solar masses, developing into full convection if the initial hydrogen and metals abundances are high. The effects of low initial hydrogen and metals abundances are examined, and the critical importance is demonstrated of the depths of the semiconvective zone and the outer convective envelope in promoting a blue loop and determining the maximum effective temperature on the loop. The extent of the thermally stable stages of the blue-loop phase is determined.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call