Abstract

We compute electron-capture rates for ${}^{54,56}$Fe and Ge isotopes using a self-consistent microscopic approach. The single-nucleon basis and the occupation factors in the target nucleus are calculated in the finite-temperature Skyrme Hartree-Fock model, and the ${J}^{\ensuremath{\pi}}={0}^{\ifmmode\pm\else\textpm\fi{}}$, ${1}^{\ifmmode\pm\else\textpm\fi{}}$, ${2}^{\ifmmode\pm\else\textpm\fi{}}$ charge-exchange transitions are determined in the finite-temperature random-phase approximation (RPA). The scheme is self-consistent; i.e., both the Hartree-Fock and the RPA equations are based on the same Skyrme functional. Several interactions are used in order to provide a theoretical uncertainty on the electron-capture rates for different astrophysical conditions. Comparing electron-capture rates obtained either with different Skyrme sets or with different available models indicates that differences up to one to two orders of magnitude can arise.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.