Abstract

Abstract Observations of massive stars within the central parsec of the Galaxy show that, while most stars orbit within a well-defined disc, a significant fraction have large eccentricities and/or inclinations with respect to the disc plane. Here, we investigate whether this dynamically hot component could have arisen via scattering from an initially cold disc – the expected initial condition if the stars formed from the fragmentation of an accretion disc. Using N-body methods, we evolve a variety of flat, cold, stellar systems, and study the effects of initial disc eccentricity, primordial binaries, very massive stars and intermediate mass black holes. We find, consistent with previous results, that a circular disc does not become eccentric enough unless there is a significant population of undetected 100–1000 M⊙ objects. However, since fragmentation of an eccentric disc can readily yield eccentric stellar orbits, the strongest constraints come from inclinations. We show that none of our initial conditions yields the observed large inclinations, regardless of the initial disc eccentricity or the presence of massive objects. These results imply that the orbits of the young massive stars in the Galactic Centre are largely primordial, and that the stars are unlikely to have formed as a dynamically cold disc.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.