Abstract

A Bayesian approach to the determination of stellar distances from photometric and spectroscopic data is presented and tested both on pseudodata, designed to mimic data for stars observed by the RAVE survey, and on the real stars from the Geneva-Copenhagen survey. It is argued that this method is optimal in the sense that it brings to bear all available information and that its results are limited only by observational errors and the underlying physics of stars. The method simultaneously returns the metallicities, ages and masses of programme stars. Remarkably, the uncertainty in the output metallicity is typically 44 per cent smaller than the uncertainty in the input metallicity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.