Abstract
Abstract Disc galaxies can exchange angular momentum and baryons with their host dark matter (DM) haloes. These haloes possess internal spin, λ, which is insignificant rotationally but does affect interactions between the baryonic and DM components. While statistics of prograde and retrograde spinning haloes in galaxies is not available at present, the existence of such haloes is important for galaxy evolution. In the previous works, we analysed dynamical and secular evolution of stellar bars in prograde spinning haloes and the DM response to the bar perturbation, and found that it is modified by the resonant interactions between the bar and the DM halo orbits. In this work, we follow the evolution of stellar bars in retrograde haloes. We find that this evolution differs substantially from evolution in rigid unresponsive haloes, discussed in the literature. First, we confirm that the bar instability is delayed progressively along the retrograde λ sequence. Secondly, the bar evolution in the retrograde haloes differs also from that in the prograde haloes, in that the bars continue to grow substantially over the simulation time of 10 Gyr. The DM response is also substantially weaker compared to this response in the prograde haloes. Thirdly, using orbital spectral analysis of the DM orbital structure, we find a phenomenon we call the orbit reversal – when retrograde DM orbits interact with the stellar bar, reverse their streaming and precession, and become prograde. This process dominates the inner halo region adjacent to the bar and allows these orbits to be trapped by the bar, thus increasing efficiency of angular momentum transfer by the inner Lindblad resonance. We demonstrate this reversal process explicitly in a number of examples.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.