Abstract

The framework of Stein's method for Poisson process approximation is presented from the point of view of Palm theory, which is used to construct Stein identities and define local dependence. A general result (Theorem \refimportantproposition) in Poisson process approximation is proved by taking the local approach. It is obtained without reference to any particular metric, thereby allowing wider applicability. A Wasserstein pseudometric is introduced for measuring the accuracy of point process approximation. The pseudometric provides a generalization of many metrics used so far, including the total variation distance for random variables and the Wasserstein metric for processes as in Barbour and Brown [Stochastic Process. Appl. 43 (1992) 9-31]. Also, through the pseudometric, approximation for certain point processes on a given carrier space is carried out by lifting it to one on a larger space, extending an idea of Arratia, Goldstein and Gordon [Statist. Sci. 5 (1990) 403-434]. The error bound in the general result is similar in form to that for Poisson approximation. As it yields the Stein factor 1/\lambda as in Poisson approximation, it provides good approximation, particularly in cases where \lambda is large. The general result is applied to a number of problems including Poisson process modeling of rare words in a DNA sequence.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call