Abstract
We investigate structural properties of the cone of roots of relative Steiner polynomials of convex bodies. We prove that they are closed, monotonous with respect to the dimension, and that they cover the whole upper half-plane, except the positive real axis, when the dimension tends to infinity. In particular, it turns out that relative Steiner polynomials are stable polynomials if and only if the dimension is ≤ 9. Moreover, pairs of convex bodies whose relative Steiner polynomial has a complex root on the boundary of such a cone have to satisfy some Aleksandrov–Fenchel inequality with equality. An essential tool for the proofs of the results is the characterization of Steiner polynomials via ultra-logconcave sequences.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.