Abstract
Gamma regression is applied in several areas such as life testing, forecasting cancer incidences, genomics, rainfall prediction, experimental designs, and quality control. Gamma regression models allow for a monotone and no constant hazard in survival models. Owing to the broad applicability of gamma regression, we propose some novel and improved methods to estimate the coefficients of gamma regression model. We combine the unrestricted maximum likelihood (ML) estimators and the estimators that are restricted by linear hypothesis, and we present Stein-type shrinkage estimators (SEs). We then develop an asymptotic theory for SEs and obtain their asymptotic quadratic risks. In addition, we conduct Monte Carlo simulations to study the performance of the estimators in terms of their simulated relative efficiencies. It is evident from our studies that the proposed SEs outperform the usual ML estimators. Furthermore, some tabular and graphical representations are given as proofs of our assertions. This study is finally ended by appraising the performance of our estimators for a real prostate cancer data.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.