Abstract

Stein's method of obtaining distributional approximations is developed in the context of functional approximation by the Wiener process and other Gaussian processes. An appropriate analogue of the one-dimensional Stein equation is derived, and the necessary properties of its solutions are established. The method is applied to the partial sums of stationary sequences and of dissociated arrays, to a process version of the Wald-Wolfowitz theorem and to the empirical distribution function.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.