Abstract

In this article we give a homological characterization of the topology of Stein spaces over any valued base field. In particular, when working over the field of complex numbers, we obtain a characterization of the usual Euclidean (transcendental) topology of complex analytic spaces. For non-Archimedean base fields the topology we characterize coincides with the topology of the Berkovich analytic space associated to a non-Archimedean Stein algebra. Because the characterization we used is borrowed from a definition in derived geometry, this work should be read as a derived perspective on analytic geometry.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.