Abstract

In this paper, we focus on quantization-index-modulation (QIM) steganography in low-bit-rate speech codec and contribute to improve its steganalysis resistance. A novel QIM steganography is proposed based on the replacement of quantization index set in linear predictive coding (LPC). In this method, each quantization index set is seen as a point in quantization index space. Steganography is conducted in such space. Comparing with other methods, our algorithm significantly improves the embedding efficiency. One quantization index needs to be changed at most when three binary bits are hidden. The number of alterations introduced by the proposed approach is much lower than that of the current methods with the same embedding rate. Due to the fewer cover changes, the proposed steganography is less detectable. Moreover, a division strategy based on the genetic algorithm is proposed to reduce the additional distortion introduced by replacements. In our experiment, ITU-T G.723.1 is selected as the codec, and the experimental results show that the proposed approach outperforms the state-of-the-art LPC-based approach in low-bit-rate speech codec with respect to both steganographic capacity and steganalysis resistance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.