Abstract

Quantum steganography that utilizes the quantum mechanical effect to achieve the purpose of information hiding is a popular topic of quantum information. Recently, El Allati et al. proposed a new quantum steganography using the GHZ4 state. Since all of the 8 groups of unitary transformations used in the secret message encoding rule change the GHZ4 state into 6 instead of 8 different quantum states when the global phase is not considered, we point out that a 2-bit instead of a 3-bit secret message can be encoded by one group of the given unitary transformations. To encode a 3-bit secret message by performing a group of unitary transformations on the GHZ4 state, we give another 8 groups of unitary transformations that can change the GHZ4 state into 8 different quantum states. Due to the symmetry of the GHZ4 state, all the possible 16 groups of unitary transformations change the GHZ4 state into 8 different quantum states, so the improved protocol achieves a high efficiency.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call