Abstract
Selective regulation of chemical reactions is crucial in chemistry. Oxygen, as a key reagent in ubiquitous oxidative chemistry, exhibits great potential in regulating molecular assemblies, and more importantly, chemical reactions in molecular systems supported by metal surfaces. However, the unique catalytic performance and reaction mechanisms of oxygen species remain elusive, which are essential for understanding reaction selection and regulation. In this study, by a combination of scanning tunneling microscopy (STM) imaging/manipulations and density functional theory (DFT) calculations, we showed that the on-surface reaction pathways of terminal alkynes could be steered from C-C coupling to C-H activation with high selectivity by introducing O2 into the molecular system. The catalytic performance and reaction mechanisms of oxygen species were explored in the C-H activation processes, and both molecular O2 and atomic O could efficiently steer the reaction pathways. These results would provide a fundamental understanding of interfacial catalytic reaction processes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.