Abstract

Significant progress has been demonstrated in the development of bifunctional oxide-zeolite catalyst concept to tackle the selectivity challenge in syngas chemistry. Despite general recognition on the importance of defect sites of metal oxides for CO/H2 activation, the actual structure and catalytic roles are far from being well understood. We demonstrate here that syngas conversion can be steered along a highly active and selective pathway towards light olefins via ketene-acetate (acetyl) intermediates by the surface with coordination unsaturated metal species, oxygen vacancies and zinc vacancies over ZnGaOx spinel−SAPO-34 composites. It gives 75.6% light-olefins selectivity and 49.5% CO conversion. By contrast, spinel−SAPO-34 containing only a small amount of oxygen vacancies and zinc vacancies gives only 14.9% light olefins selectivity at 6.6% CO conversion under the same condition. These findings reveal the importance to tailor the structure of metal oxides with coordination unsaturated metal sites/oxygen vacancies in selectivity control within the oxide-zeolite framework for syngas conversion and being anticipated also for CO2 hydrogenation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.