Abstract

The two-dimensional (2D) self-assembly of 1,3,5-triethynyl-benzene (TEB) and de novo synthesized 1,3,5-tris-(4-ethynylphenyl)benzene (Ext-TEB) on Ag(111) was investigated by means of scanning tunneling microscopy (STM) under ultrahigh vacuum (UHV) conditions. Both 3-fold symmetric molecules form long-range ordered nanoporous networks featuring organizational chirality, mediated by novel, planar 6-fold cyclic binding motifs. The key interaction for the expression of the motifs is identified as C–H···π bonding. For Ext-TEB, an additional open-porous phase exists with the 3-fold motif. The nature of the underlying noncovalent bonding schemes is thoroughly analyzed by density functional theory (DFT) calculations including van der Waals corrections. The comparison of calculations focusing on isolated 2D molecular sheets and those including the substrate reveals the delicate balance between the attractive molecule–molecule interaction, mediated by both the terminal alkyne and the phenyl groups, and the molecule–substrate interaction responsible for the commensurability and the regularity of the networks. Comparison with bulk structures of similar molecules suggests that these strictly planar cyclic binding motifs appear only in 2D environments.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.