Abstract

A two-layer theory is used to investigate (1) the steering of upper ocean current pathways by topographically constrained abyssal currents that do not impinge on the bottom topography and (2) its application to upper ocean – topographic coupling via flow instabilities where topographically constrained eddy-driven deep mean flows in turn steer the mean pathways of upper ocean currents and associated fronts. In earlier studies the two-layer theory was applied to ocean models with low vertical resolution (2–6 layers). Here we investigate its relevance to complex ocean general circulation models (OGCMs) with high vertical resolution that are designed to simulate a wide range of ocean processes. The theory can be easily applied to models ranging from idealized to complex OGCMs, provided it is valid for the application. It can also be used in understanding some persistent features seen in observed ocean frontal pathways (over deep water) derived from satellite imagery and other data. To facilitate its application, a more thorough explanation of the theory is presented that emphasizes its range of validity. Three regions of the world ocean are used to investigate its application to eddy-resolving ocean models with high vertical resolution, including one where an assumption of the two-layer theory is violated. Results from the OGCMs with high vertical resolution are compared to those from models with low vertical resolution and to observations. In the Kuroshio region upper ocean – topographic coupling via flow instabilities and a modest seamount complex are used to explain the observed northward mean meander east of Japan where the Kuroshio separates from the coast. The Japan/East Sea (JES) is used to demonstrate the impact of upper ocean – topographic coupling in a relatively weak flow regime. East of South Island, New Zealand, the Southland Current is an observed western boundary current that flows in a direction counter to the demands of Sverdrup flow and counter to the direction simulated in nonlinear global flat bottom and reduced gravity models. A model with high vertical resolution (and topography extending through any number of layers) and a model with low vertical resolution (and vertically compressed but otherwise realistic topography confined to the lowest layer) both simulate a Southland Current in the observed direction with dynamics depending on the configuration of the regional seafloor. However, the dynamics of these simulations are very different because the Campbell Plateau and Chatham Rise east and southeast of New Zealand are rare features of the world ocean where the topography intrudes into the stratified water column over a relatively broad area but lies deeper than the nominal 200 m depth of the continental shelf break, violating a limitation of the two-layer theory. Observations confirm the results from the high vertical resolution model. Overall, the model simulations show increasingly widespread upper ocean – topographic coupling via flow instabilities as the horizontal resolution of the ocean models is increased, but fine resolution of mesoscale variability and the associated flow instabilities are required to obtain sufficient coupling. As a result, this type of coupling is critical in distinguishing between eddy-resolving and eddy-permitting ocean models in regions where it occurs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call