Abstract
Living organisms adapt to challenges through evolution. This has proven to be a key difficulty in developing therapies, since the organisms evolve resistance.I propose the wild idea of steering evolution strategically — using computational game theory for (typically incomplete-information) multistage games and opponent exploitation techniques. A sequential contingency plan for steering evolution is constructed computationally for the setting at hand. In the biological context, the opponent (e.g., a disease) has a systematic handicap because it evolves myopically. This can be exploited by computing trapping strategies that cause the opponent to evolve into states where it can be handled effectively. Potential application classes include therapeutics at the population, individual, and molecular levels (drug design), as well as cell repurposing and synthetic biology.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Proceedings of the AAAI Conference on Artificial Intelligence
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.