Abstract

Several publications have shown that it is beneficial to design a driver assistance system using a shared control structure. For the steering task this structure can be realized with a setup in which driver and automation can apply a torque on the steering wheel in parallel. Thereby both, driver and assistance system, interact with the vehicle and each other over the haptical channel. In the system the driver is given and cannot be changed. The question is how to design the assistance system controller as an ideal complement to the driver. In this paper a formal design concept is applied to this problem which utilizes the fact that adding a controller to the overall system has to lead to a Nash equilibrium. Remaining degrees of freedom are used to optimize the designed controller with respect to a global objective function that specifies overall system performance. We refer the concept as “cooperative shared control design”. For the concept driver and vehicle are modeled as a differential game. We show systematically that this concept can be used to determine the optimal assistance system if the driver characteristics are known. Simulations prove the applicability of this concept.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.