Abstract

We derive steerability criteria applicable for both finite and infinite dimensional quantum systems using covariance matrices of local observables. We show that these criteria are useful to detect a wide range of entangled states particularly in high dimensional systems and that the Gaussian steering criteria for general M x N-modes of continuous variables are obtained as a special case. Extending from the approach of entanglement detection via covariance matrices, our criteria are based on the local uncertainty principles incorporating the asymmetric nature of steering scenario. Specifically, we apply the formulation to the case of local orthogonal observables and obtain some useful criteria that can be straightforwardly computable, and testable in experiment, with no need for numerical optimization.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.