Abstract

Collagen is a fibrous protein that is responsible for structural integrity of various connective tissues such as bone, tendon, and skin. The mechanical properties of these hierarchical tissue structures are greatly influenced by presence of long and slender (~300 long and ~1.5 nm in diameter) collagen molecules that impart strength and elasticity. The current molecular dynamics studies of collagen are limited to the use of short collagen molecules that are approximately 8.5 nm in length. This study investigates the mechanical behavior of the full-length collagen molecule and the short collagen by using steered molecular dynamics. The simulations were carried out at various loading conditions corresponding to different rates of pulling and springs of different stiffness were used to pull collagen molecules. The underlying mechanisms with respect to unfolding of collagen molecules differ significantly between short and full-length molecules when stretched in molecular dynamics simulations. These differences...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.