Abstract

The binding free energy of 4-bromophenol (4-BP), an inhibitor that binds in the internal binding site in dehaloperoxidase-hemoglobin (DHP) was calculated using Molecular Dynamics (MD) methods combined with pulling or umbrella sampling. The effects of systematic changes in the pulling speed, pulling force constant and restraint force constant on the calculated potential of mean force (PMF) are presented in this study. The PMFs calculated using steered molecular dynamics (SMD) were validated by umbrella sampling (US) in the strongly restrained regime. A series of restraint force constants ranging from 1000 down to 5 kJ/(mol nm2) were used in SMD simulations. This range was validated using US, however noting that weaker restraints give rise to a broader sampling of configurations. This comparison was further tested by a pulling simulation conducted without any restraints, which was observed to have a value closest to the experimentally measured free energy for binding of 4-BP to DHP based on ultraviolet–visible (UV–vis) and resonance Raman spectroscopies. The protein-inhibitor system is well suited for fundamental study of free energy calculations because the DHP protein is relatively small and the inhibitor is quite rigid. Simulation configuration structures are compared to the X-ray crystallography structures of the binding site of 4-BP in the distal pocket above the heme.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.