Abstract

In this study, we applied steered molecular dynamics (SMD) simulations to investigate the unbinding mechanism of nine inhibitors of the enzyme cyclin-dependent kinase 5 (CDK5). The study had two major objectives: (i) to create a correlation between the unbinding force profiles and the inhibition activities of these compounds expressed as IC50 values; (ii) to investigate the unbinding mechanism and to reveal atomistic insights, which could help identify accessory binding sites and transient interactions. Overall, we carried out 1.35 μs of cumulative SMD simulations. We showed that SMD could qualitatively discriminate binders from nonbinders, while it failed to properly rank series of inhibitors, particularly when IC50 values were too similar. From a mechanistic standpoint, SMD provided useful insights related to transient and dynamical interactions, which could complement static description obtained by X-ray crystallography experiments. In conclusion, the present study represents a further step toward a systematic exploitation of SMD and other dynamical approaches in structure-based drug design and computational medicinal chemistry.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.