Abstract

E-cadherin is a member of the cadherin family that plays a key role in the formation of cell-cell adhesion among epithelial tissues. Point mutations are one of the structural abnormalities of E-cadherin in human carcinomas. Such abnormalities can alter mechanical properties of proteins that play an important role in their biological activities. To determine the impact of point mutations on protein mechanical properties, the second fragment of extracellular domain of E-cadherin was modeled using steered molecular dynamics simulations. The molecular dynamics modeling included application of tensile forces in both constant velocity and constant force modes to examine the effects of Met282 to He and Asn315 to Ser mutations on mechanical behavior of protein structure. The stabilities of the wild type and mutant structures were also obtained by the protein design foldX algorithm. Results confirmed the lower stability of the mutant domains compared to the wild type. The mutated proteins displayed softer behavior than the reference protein and their stiffness decreased by up to 34%. Our findings suggest that local changes in molecular structure due to mutations may lead to noticeable alterations in mechanical properties within the entire domain. Since the function of protein is related to its structure, these changes may influence the function of the protein.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call