Abstract
In photon-limited imaging, the pixel intensities are affected by photon count noise. Many applications require an accurate estimation of the covariance of the underlying 2-D clean images. For example, in X-ray free electron laser (XFEL) single molecule imaging, the covariance matrix of 2-D diffraction images is used to reconstruct the 3-D molecular structure. Accurate estimation of the covariance from low-photon-count images must take into account that pixel intensities are Poisson distributed, hence the classical sample covariance estimator is highly biased. Moreover, in single molecule imaging, including in-plane rotated copies of all images could further improve the accuracy of covariance estimation. In this paper we introduce an efficient and accurate algorithm for covariance matrix estimation of count noise 2-D images, including their uniform planar rotations and possibly reflections. Our procedure, steerable ePCA, combines in a novel way two recently introduced innovations. The first is a methodology for principal component analysis (PCA) for Poisson distributions, and more generally, exponential family distributions, called ePCA. The second is steerable PCA, a fast and accurate procedure for including all planar rotations when performing PCA. The resulting principal components are invariant to the rotation and reflection of the input images. We demonstrate the efficiency and accuracy of steerable ePCA in numerical experiments involving simulated XFEL datasets and rotated face images from Yale Face Database B.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.