Abstract

Disks of low-mass bodies scattered by giant planets to large semimajor axis and constant periapsis orbits are vulnerable to a buckling instability. This instability exponentially grows orbital inclinations, raises periapsis distances, and coherently tilts orbits resulting in clustering of arguments of periapsis. The dynamically hot system is then susceptible to the formation of a lopsided mode. Here we show that the timescale of the buckling instability decreases as the radial surface density of the population becomes more centrally dense, i.e., steeper scattered disks buckle faster. Accounting for differential apsidal precession driven by giant planets, we find that ∼10 M ⊕ is sufficient for a primordial scattered disk in the trans-Neptunian region to have been unstable if .

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.