Abstract
Steep switching Tunnel FETs (TFET) can extend the supply voltage scaling with improved energy efficiency for both digital and analog/RF application. In this paper, recent approaches on III-V Tunnel FET device design, prototype device demonstration, modeling techniques and performance evaluations for digital and analog/RF application are discussed and compared to CMOS technology. The impact of steep switching, uni-directional conduction and negative differential resistance characteristics are explored from circuit design perspective. Circuit-level implementation such as III-V TFET based Adder and SRAM design shows significant improvement on energy efficiency and power reduction below 0.3V for digital application. The analog/RF metric evaluation is presented including g <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">m</sub> /I <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">ds</sub> metric, temperature sensitivity, parasitic impact and noise performance. TFETs exhibit promising performance for high frequency, high sensitivity and ultra-low power RF rectifier application.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.