Abstract

Steel-concrete (SC) composite walls being considered and used as an alternative to conventional reinforced concrete (RC) walls in safety-related nuclear facilities due to their construction economy and structural efficiency. However, there is a lack of standardized codes for SC structures, and design guidelines and approaches are still being developed. This paper presents the development and verification of: (a) mechanics based model, and (b) detailed nonlinear finite element model for predicting the behavior and failure of SC wall panels subjected to combinations of in-plane forces. The models are verified using existing test results, and the verified models are used to explore the behavior of SC walls subjected to combinations of in-plane forces and moments. The results from these investigations are used to develop an interaction surface in principle force (Sp1–Sp2) space that can be used to design or check the adequacy of SC wall panels. The interaction surface is easy to develop since it consists of straight line segments connecting anchor points defined by the SC wall section strengths in axial tension, in-plane shear, and compression. Both models and the interaction surface (for design) developed in this paper are recommended for future work. However, in order to use these approaches, the SC wall section should be detailed with adequate shear connector and tie bar strength and spacing to prevent non-ductile failure modes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.