Abstract
Following a major earthquake, self-centering moment resisting frames (SC-MRFs) are capable of returning to their original plumb position and sustaining little structural damage. Under earthquake loading, these frames are characterized by a gap that develops between one of the beam flanges and the column face at the connection. This gap causes the frame to expand and therefore imposes special design requirements on the floor diaphragm and on the floor system (e.g. filler beams and slab) that are connected to it. Through nonlinear analyses of several floor diaphragm designs, this paper examines the influence that the floor diaphragm stiffness, strength, and configuration have on the seismic response of SC-MRFs. The floor diaphragm is represented by collector beams that transfer the inertia forces from the building floor to the SC-MRF. This work also presents several equations that are used to predict the effect that the floor diaphragm has on the axial force and moments that develop in the SC-MRF beams. This effect is shown to not be negligible. Finally, practical considerations related to the construction of SC-MRFs that use collector beams as the floor diaphragm are discussed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.