Abstract
BP neural network has some shorcomings,such as local extreme. Support vector machine is a novel statistical learning algorithm,which is based on the principle of structural risk minimization. In the paper, support vector machine is used to perform steel pip corrosion forecasting.The collected steel pip corrosion forecasting experimental data are given,among which corrosion deeps from 8ths to 11ths are used to test the proposed prediction model. BP neural network is applied to steel pip corrosion deep forecasting,which is used to compare with support vector machine to show the superiority of support vector machine in steel pip corrosion forecasting.The comparison of the prediction error of steel pip corrosion deep between support vector machine and BP neural network is given. It can be seen that the prediction ability for steel pip corrosion deep of support vector machine is better than that of BP neural network
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.