Abstract

FREEDAM joints have been recently seismically prequalified for applications in European seismically prone countries. Despite their excellent seismic response, FREEDAM joints are not purposely conceived for exceptional loading conditions, such as in the case of a column loss scenario. Therefore, a comprehensive parametric numerical study has been carried out to investigate the robustness of this type of joint, varying the geometry of the beam–column assembly and the associated friction device. The results of the performed finite-element simulations allowed the identification of the critical components of the joints such as the upper T-stub connecting the upper beam flange to the column. This component is characterized by significant demand, due to the concentration of tensile and shear forces when catenary action develops in the beam. In order to enhance the ductility of the beam-to-column joint under large imposed rotations, the details of the upper T-stub connection were modified and numerically analyzed. The obtained results allowed for the verifying of the effectiveness of the amended details as well as characterizing the evolution of the tensile forces in the bolts.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.