Abstract

Far-field super-resolution microscopy is a rapidly emerging method that is opening up opportunities for biological imaging beyond the optical diffraction limit. We have implemented a Stimulated Emission Depletion (STED) microscope to image single dye, cell, and tissue samples with 50-80 nm resolution. First, we compare the STED performance imaging single molecules of several common dyes and report a novel STED dye. Then we apply STED to image planar cell polarity protein complexes in intact fixed Drosophila tissue for the first time. Finally, we present a preliminary study of the centrosomal protein Cep164 in mammalian cells. Our images suggest that Cep164 is arranged in a nine-fold symmetric pattern around the centriole, consistent with findings suggested by cryoelectron tomography. Our work demonstrates that STED microscopy can be used for superresolution imaging in intact tissue and provides ultrastructural information in biological samples as an alternative to immuno-electron microscopy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.