Abstract
BackgroundBiomarkers for cardiometabolic risk (CMR) factors would be important tools to maximize the effectiveness of dietary interventions to prevent cardiovascular diseases. Thus, the aim of this work was to analyze stearoyl-CoA desaturase (SCD) indexes and n-6/n-3 fatty acids (FA) ratio as biomarkers of CMR induced by feeding rabbits on high fat diets (HFDs).MethodsRabbits were fed either regular diet or 18 % fat in regular diet (HFD) or 1 % cholesterol diet (HD) or diet containing 1 % cholesterol and 18 % fat (HFD-HD) during 6 weeks. Body weights (BW), blood pressure, visceral abdominal fat (VAF) and glucose tolerance test were determined. Total cholesterol (TC), low density lipoprotein-cholesterol (LDL-C), high density lipoprotein-cholesterol (HDL-C), triglycerides (TG), fasting glucose (FG), and FA levels from plasma were measured. SCD indexes were calculated as product/precursor ratios of individual FA.ResultsBW was similar in all diet groups. HD increased TC, LDL-C, HDL-C, and TG. HFD increased TG, VAF and FG, and decreased HDL-C. The addition of HFD to HD joined to dyslipidemia increased VAF and FG. SCD indexes were increased and n-6/n-3 was unchanged in HD. SCD indexes were reduced and n-6/n-3 FA ratio was increased in HFD and HFD-HD. CMR factors were correlated positively with n-6/n-3 FA ratio. Although VAF had a stronger correlation with n-6/n-3 FA ratio than with SCD indexes, VAF was associated independently to both markers.ConclusionsHFD simulating lipid composition of the average Western-style diet induced experimental rabbit models of normal-weight metabolic syndrome (MS). SCD indexes and n-6/n-3 were modified according to the type of dietary fat. Considering that VAF and CMR factors appear to be stronger associated to n-6/n-3 FA ratio than to SCD indexes, n-6/n-3 FA ratio may be a better biomarker of MS and CMR in normal-weight subjects than SCD indexes.
Highlights
Biomarkers for cardiometabolic risk (CMR) factors would be important tools to maximize the effectiveness of dietary interventions to prevent cardiovascular diseases
The present study showed that feeding rabbits with a high fat diets (HFD) during a short time induced models of dyslipidemia characterized by multiple risk factors compatibles with the definition of Metabolic syndrome (MS): excess of fat in the abdominal visceral area, high TG level, low high density lipoprotein-cholesterol (HDL-C) level, high fasting glucose level and glucose intolerance
The present study demonstrated that a HFD rich in Satured fatty acids (SFA), n-6 Polyunsaturated fatty acids (PUFA) and cholesterol simulating a Western-style diet induced rabbit models of MS with normal-weight
Summary
Biomarkers for cardiometabolic risk (CMR) factors would be important tools to maximize the effectiveness of dietary interventions to prevent cardiovascular diseases. It is well recognized that the dietary fat is strongly related with the development of cardiovascular disease. According to the Consensus Conference Report published by the American Diabetes Association and the American College of Cardiology Foundation [1], cardiometabolic risk (CMR) refers to a high lifetime risk for cardiovascular disease. CMR is similar to MS but is more inclusive, as it includes other risk factors such as high levels of total cholesterol (TC) and low density lipoproteincholesterol (LDL-C). Dietary saturated fat intake has been shown to increase the risk of heart disease and stroke. It is estimated to cause about 31 % of coronary heart disease and 11 % of stroke worldwide
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.