Abstract
Palm oil is widely used in the food industry because of its lower cost, high oxidative stability index, long shelf-life, and a reasonable replacement of trans fats. However, increased palm oil production reduces biodiversity, damages the ecosystem, and poses health risks to humans. Unsustainable development of palm plantations has caused deforestation and loss of natural habitat, rendering many species (Sumatran orangutans, elephants, and tigers) critically endangered. Similarly, decomposition and burning of carbon-rich soil in vast and deep peatlands is increasing carbon emissions. Furthermore, excessive consumption of palmitic acid (and other saturated fats except stearic acid) increases bad cholesterol and the risk of cardiovascular diseases. Therefore, we need healthier, stable, and solid/semi-solid oils at room temperature with longer shelf-life and without trans fats. Here, we review the advancements in the development of sunflower oil varieties containing high stearic (∼18%) and high oleic (∼70%) acids which makes them healthy and sustainable alternatives to palm oil. First, the high-stearic-high-oleic sunflower crops can have grain and oil yield as high as 4036 and 1685 kg/ha and oleic and stearic acid yield up to ∼73 and ∼21%. Second, high-stearic-high-oleic oils obtained from mutant and hybrid sunflower cultivars have higher oxidative stability index and therefore have better stability, quality, and functionality than regular sunflower oil. For example, the oxidative stability index of commercially available Nutrisun at 110 °C is six times greater than that of regular sunflower oil. Finally, recent advances have made several mutant and hybrid cultivars with high grain and oil yield and high levels of stearic and oleic acids available. Given this progress, natural healthy high-stearic-high-oleic sunflower oil can now be grown in both the hemispheres in a sustainable manner with the currently available advanced technology and without damaging the ecosystem as is currently happening with palm oil cultivation.
Highlights
It has been reported that the consumption of palmitic acid increases the risk of cardiovascular diseases (WHO 2003; Chen et al 2011), and much of the palm oil consumed in food is oxidized to the extent that when compared to the fresh state poses a health risk
The highest stearic acid seeds were obtained from the plants that produced the seeds during the period of maximum summer temperatures (35–40 °C during the day and 20–25 °C at night) (Fernandez-Moya et al 2002) whereas in the medium stearic containing CAS-3 and CAS-4 mutants, and a high stearic acid containing line ADV-3512, the stearic acid proportions decreased at high temperatures (Izquierdo et al 2013)
Using RFLP-AFLP linkage maps constructed from two different mapping populations derived from CAS-3, the SAD17A locus was mapped to the linkage group (LG) 1 of the sunflower genetic map, according to the LG nomenclature of Berry et al (1997), and was found to underlie the major quantitative trait loci (QTL) affecting the concentration of C18:0 trait in this line (C18):0
Summary
Palm oil happens to be among the products which causes immense ecological damage. Increase in palm oil production occurs at the expense of biodiversity and damages the ecosystem. The new high-stearic (HS) and high-stearic-high-oleic (HSHO) sunflower oil could be a reliable source of stearic-rich butter and an alternative to tropical fats These oils can be fractionated to produce stearins enriched in stearic acid with physical properties similar to cocoa butter and other confectionary fats without hydrogenation or transesterification. These fats can be produced in temperate countries from a well-established crop like sunflower and would be a healthy source of saturated FAs (Garcés et al 2012).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.