Abstract

Theranostic nanoplatforms are promising approaches for diagnosis and treatment. Here, we report a drug-loaded nanomicelle system with biocleavable gadolinium (Gd) chelates as a multifunctional biodegradable agent for simultaneous magnetic resonance imaging (MRI) and drug delivery. Self-assembled nanomicelles based on stearic acid-grafted chitooligosaccharide were utilized as vehicles. Gd chelates, DTPA-Gds, were linked to the nanomicelles via redox-responsive disulfide bonds, and hydrophobic drugs were encapsulated in the micelle cores. MRI and cargo delivery were investigated in orthotopic pancreatic tumor-bearing mice. In vivo MRI demonstrated that the biodegradable agent was cleaved by endogenous thiols after intravenous injection, and the released DTPA-Gds were eliminated rapidly. At the same time, the agent resulted in a greater contrast enhancement of T1-weighted MR signal intensity at the tumor region than Magnevist®, and the tumor boundaries were clearly defined for at least 2h. In addition, the agent possessed high drug-loading and tumor-targeting capacities. Loading content and encapsulation efficiency of docetaxel were 3.2% and 99.4%, respectively. Compared with Taxotere®, the commercially available docetaxel injection, the docetaxel-loaded agent significantly increased the drug concentration in tumor tissue in vivo. The fabricated multifunctional agent may serve as a biodegradable nanoscale MRI contrast agent and as a drug delivery system for tumor diagnosis and treatment.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.