Abstract
Summary A series of experiments was conducted in one-eighth of a five-spot-pattern, high-pressure, scaled physical model to evaluate the potential of steamflooding oil-sand reservoirs through a bottomwater zone in Cold Lake, Alta. During the experiments, steam was injected into the bottomwater zone at a constant rate until steam breakthrough occurred at the production well. The steam injection rate then was reduced to limit steam production. Results demonstrate that the process is influenced by the steam injection flow rate because of the important role played by gravity override. Increasing the steam injection rate beyond an optimum value results in decreased oil/steam ratios (OSR's) and reduced final oil recovery because steam channels to the production well. A delay in oil production was noticed in all experiments. A moving-heat-source, gravity-override, analytical model was used to investigate the mechanisms of reservoir heating in the presence of steam-gravity override. In addition, the thermal efficiency of the process, determined from the experiments and extrapolated to field conditions, was compared with predictions from Prats' thermal efficiency model. Prats' model predicted the measured thermal efficiency reasonably well at lower injection rates. As the injection rate increased, however, larger differences between Prats' model and the experiments were noticed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.