Abstract

A rigorous kinetic model for the formation and gasification of filamentous carbon on a nickel steam-reforming catalyst is derived. Carbon formation and gasification experiments were performed in an electrobalance unit at temperatures ranging from 773 to 823 K and partial pressures of the various components in the range encountered in industrial steam reformers. The rates of growth or gasification of the carbon filaments were always based on the same number of carbon filaments. The gasification by carbon dioxide and by steam proceed through adsorbed oxygen, generated by the dissociation of steam and carbon dioxide. Relationships between the various carbon formation and gasification reactions are accounted for, to ensure that the kinetic model is thermodynamically sound. The lower net rate of carbon formation on an alkalized catalyst can be explained by a lower lumped forward rate coefficient for the methane cracking and an increased surface concentration of oxygen.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.