Abstract
In this first of a series of two papers, the effects of varying steam levels on the total steam flowrate are analyzed mathematically for the traditional parallel configuration as well as for the case of hot liquid reuse. It is demonstrated that in the case of parallel heat exchangers utilizing only latent heat, a minimum total steam flowrate is obtained by optimally selecting steam levels, but that in the case of hot liquid reuse, introducing multiple steam levels increases the minimum total steam flowrate attainable under those conditions. The flowrate attained utilizing hot liquid reuse, however, remains lower than when only utilizing latent heat. It is concluded that the lowest steam flowrate is attained using hot liquid reuse and only a single level of steam, but that the presence of additional steam levels resulting from turbines requires a more holistic approach to the synthesis of steam networks.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.