Abstract

Recovery of chemicals and fuels from unrecyclable waste plastics at high temperatures (>800 °C) has received much research attention. Thermodynamic equilibrium calculation suggests that it is possible to perform the low-temperature steam reforming of polystyrene. In this study, we synthesized a Ni-Fe bimetallic catalyst for the low-temperature (500 °C) steam reforming of polystyrene. XRD characterization showed that Ni-Fe alloy was formed in the catalyst. Compared to conventional Ni catalysts, the Ni-Fe bimetallic catalysts can significantly increase the H2/CO ratio in the produced gas with high gas production yield. The online gas analysis revealed that H2, CO, and CO2 were formed in the same temperature range. H2 and CO were formed simultaneously through steam reforming reactions, and CO2 was formed through water-gas shift reaction. New morphologies of carbon deposition on the catalyst surface were found, suggesting that wax could be condensed on the catalyst surface at a low temperature.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.