Abstract

The steam reforming of 1:2 phenol–ethanol mixture (ca. 80gph+eth/Nm3 in He) as a model of biomass gasification tar, has been investigated over Ni/Al2O3, Ni/MgO-Al2O3 and Ni/ZnO-Al2O3 catalysts. In this paper interest is focused over a 5% Ni-Al2O3 catalyst, that has been characterized in the unreduced and reduced states by IR of CO adsorbed at low temperature. The steam reforming reaction of ethanol and phenol has also been studied, separately, by IR spectroscopy. In spite of its low Ni content and the absence of alkali and alkali earth ions, this catalyst is actually active in the steam reforming of both ethanol and phenol. The reaction is, however, shifted to higher temperature than with catalysts containing higher Ni-loadings and also Mg and/or Zn ions. Ethanol steam reforming occurs at lower temperature than phenol steam reforming and does not seem to be much hindered by the presence of phenol. Phenol steam reforming in the presence of ethanol starts after, but is highly selective to COx and H2. At low temperature, however, alkylation of phenol mainly occurs over the 5% Ni-Al2O3 catalyst to give mostly o-ethylphenol. Active ethoxide, acetate and phenate species are observed on the surface.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.