Abstract

Steam reforming of methane, ethane, propane and neopentane was investigated with two types of nonthermal plasma reactors. With a ferroelectric packed-bed reactor (FPR) in N/sub 2/, almost the same conversions were obtained for ethane, propane and neopentane, but methane was less reactive than these hydrocarbons. Hydrogen gas yield decreased in the order: methane/spl ap/ethane>propane>neopentane. The molar ratio of H/sub 2/ to CO {[H/sub 2/]/[CO]} exceeded 3.5 for all the hydrocarbons. [H/sub 2/]/[CO] did not change in the range of H/sub 2/O content from 0.5% to 2.5%. At the volumetric ratio of H/sub 2/O to Hydrocarbon=2.0, carbon balances were poor for ethane, propane, and neopentane, but almost all of the carbon atoms in the reacted methane were recovered as CO and CO/sub 2/. The selectivities of CO and CO/sub 2/ depended on the chemical structures of the substrate hydrocarbons. It is considered that the water-gas-shift reaction proceeds backward for the reaction systems of hydrogen-rich hydrocarbons. FPR maintained the same performance for 10 h in the steam reforming of methane. The efficiency of a silent discharge plasma reactor was much lower than that of FPR.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.