Abstract

The performance of a СuO–ZnO/γ-Al2O3 catalyst for the reactions of methanol, dimethyl ether (DME) and dimethoxymethane (DMM) steam reforming (SR) to hydrogen-rich gas was studied. The catalyst was found to be active and selective for methanol and DMM SR producing hydrogen-rich gas with low content of CO (<1 vol %). It provided complete conversion of methanol and DMM at 300°C, and hydrogen productivity of, respectively, 15 and 16.5 LH2g cat -1 h-1. With the use of physicochemical methods and catalytic experiments, it was shown that the catalyst surface contained the acid sites typical for γ-Al2O3, and CuO–ZnO agglomerates, responsible, respectively, for DMM hydration to methanol and formaldehyde, and SR of these compounds to hydrogen-rich gas.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.