Abstract
The catalytic steam reforming of acetic acid over both Ni/ and Co/Ce0·75Zr0·25O2 (CZO) catalysts in the temperature range of 450–650 °C and steam-to-carbon molar ratios of 3–9 was studied. It was found that the complete acetic acid conversion was achieved for all the conditions investigated. Nevertheless, the C–C bond cleavage conversion was attained less than the acetic acid conversion at a given condition due to carbon deposition on the catalyst. However, hydrogen yield was obtained in the same trend as C–C bond cleavage conversion as well. The results revealed that the CZO as an active support prefers to promote the ketonization reaction to the C-C bond cleavage reaction at a lower temperature, and vice versa at a higher temperature. The Ni/CZO catalyst exhibits higher C–C bond cleavage conversion than the Co/CZO catalyst particularly at 650 °C whereas the Co/CZO catalyst is more active for ketonization reaction at low temperatures. However, as an increase in reaction temperature, the Co/CZO catalyst promotes ketonization reaction more pronouncedly toward aldol-condensation reaction thus giving rise to the carbon deposition. The results deduced from the effect of space velocity on the activity and product distribution suggested that the steam reforming of acetic acid over Ni/CZO catalyst is dominated by decomposition of acetic acid, while that of Co/CZO catalyst by ketonization reaction.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.