Abstract

A catalyst based on lanthanum chromite with exsolved metallic ruthenium nanoparticles (LaCrO3-Ru) was applied as a catalytic layer for internal ethanol steam reforming of anode-supported and metal-supported solid oxide fuel cells. The metal support exhibits limited catalytic properties for the ethanol steam reforming reaction. Thus, the LaCrO3-Ru catalysts were optimized for operating temperatures in the 600-700 °C range to promote stable ethanol reforming. The catalytic layer had no significant impact on the electrochemical properties of the fuel cell, and samples with and without the catalytic layer exhibited similar performance in hydrogen. Initial durability tests with LaCrO3-Ru layer have shown that the catalytic layer plays a crucial role in the stability of the metal-supported fuel cell under ethanol.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call