Abstract

Abstract Steam injection—a thermal-based enhanced oil recovery (EOR) process—is used to improve fluid mobility within a reservoir, and it is well known that it yields positive results in heavy-oil reservoirs. In theory, steam injection has the potential of being applied in light-oil reservoirs to enable vaporization of in-situ reservoir fluids, but field developments and scientific studies of this application are sparse. Conventional displacement methods like water-flooding and gas-flooding have been applied to some extent, however, oil extraction in such reservoirs relies on recovery mechanisms like capillary imbibition or gravity drainage to recover oil from the reservoir matrix. Furthermore, low-permeability reservoir rocks are associated with low gravity drainage and high residual oil saturation. The objective of this study is to evaluate the potential of steam injection for light (47°API) oil extraction in naturally-fractured reservoirs. It is theorized that this method will serve as an effective tool for recovery of light hydrocarbons through naturally-fractured networks with the benefit of heat conduction through the rock matrix. This research investigates the application of light-oil steamflood (LOSF) in naturally- fractured reservoirs (NFR). A simulation model comprised of a matrix block surrounded by fracture network was used to study oil recovery potential under steam injection. To simulate gravity drainage, steam was injected through a horizontal well completed in the upper section of the fracture network, while the production well was completed at the bottom of the fracture network. The simulation included two different porous media: (1) natural fractures and (2) matrix blocks. Each of these porous media was assumed to be homogeneous and characterized based on typical reservoir properties for carbonate formations. This study also analyzed the impact of different recovery mechanisms during steam injection for a light-oil sample in NFR, with reservoir sensitivity examined, based on varying amounts of vaporization, injection rate, permeability, matrix height and capillary pressure. Of these, vaporization was found to be the dominant factor in the application of LOSF in NFR, as described in detail within the results.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.