Abstract

Circulating fluidized bed (CFB) gasification has several advantages for the utilization of low rank coals. However, the carbon content of fly ash is usually very high, which greatly influences the gasification efficiency. The purpose of this research is to investigate the gasification reactivity of a high-sodium Zhundong (ZD) coal fly ash obtained from a pilot-scale 2.5 t/d CFB gasification system. The experiments were carried out in a thermogravimetric analyzer with steam as gasification agent, and fast pyrolyzed ZD char was also investigated as a reference sample. The results show that increasing temperature accelerates the gasification rate both for fly ash and ZD char. Fly ash has higher gasification rate at the initial gasification stage. On the contrary, ZD char has higher reaction rate even at higher carbon conversion stage. Via distributed activation energy model, the average activation energy of ZD char and fly ash is calculated to be 94.4 and 91.2 kJ/mol, respectively. The integrated model study reveals that the reaction order of ZD char is about 0.74, whereas the reaction order of fly ash decreases from 1 to 0.59 when temperature increases from 900 to 1050 °C. The gasification reactivity of ZD coal fly ash is quite different with literature research on those fly ashes with rarely little catalytic elements in coal ashes. The interesting results are related with the unique properties of ZD coal fly ash and the transformation of sodium during gasification process.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call