Abstract

Original, non-separated pieces of the LiYCY cable (with multilayer metal/plastic (copper/PVC) structure) were gasified by steam in an excess at atmospheric pressure. Conversion of the gaseous stream was enhanced by catalytic bed of original granulated material, prepared from aluminosilicate (local clay) and calcium carbonate. In the process metal (Cu) preserved unchanged form of cords and braids and was quantitatively separated (49 % of original mass of the cable). Non-metal components (51 % of original mass of the cable) were converted to a slightly sintered non-metallic powder (3.3 % of original mass of the cable) and gaseous phase. Condensation of steam facilitated elimination of tars and oils as well as hydrochloride from the gas. It was estimated that only 5 % of carbon (from the cable components) was retained in the cooling/condensing line, mostly as water non-soluble phases. Efficiency of absorption of hydrochloride by catalytic bed and aqueous condensate was almost the same (but only 50 % of estimated total chlorine quantity was finally balanced).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.