Abstract

CD147 plays a critical role in the invasive and metastatic activity of hepatocellular carcinoma (HCC) cells by stimulating the surrounding fibroblasts to secrete matrix metalloproteinases (MMPs). Tumor cells adhesion to extracellular matrix (ECM) proteins is the first step to the tumor metastasis. MMPs degrade the ECM to promote tumor metastasis. The aim of this research was to investigate the inhibitory effects of stealth small interfering RNA (siRNA) against CD147 on HCC cell line (SMMC-7721) metastatic properties including invasion, adhesion to ECM, gelatinase production, focal adhesion kinase (FAK) and vinculin expression. Flow cytometry (FCM) and western blot assays were employed to detect the transfection efficiency of the stealth siRNA against CD147. Invasion assays and gelatin zymography were also used to detect the effects of stealth siRNA against CD147 on SMMC-7721 cells’ invasion and gelatinase production. The effects of stealth siRNA against CD147 on FAK and vinculiln expression in SMMC-7721 cells were also detected by western blot. The results showed that stealth siRNA against CD147 inhibited SMMC-7721 invasion, adhesion to ECM proteins, MMP-2 production, and FAK and vinculin expression. These findings indicate that CD147 is required for tumor cell invasion and adhesion. Perturbation of CD147 expression may have potential therapeutic uses in the prevention of MMP-2-dependent tumor invasion.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call