Abstract

In this work we are revisiting the well studied Ellis wormhole solution in a Horndeski theory motivated from the Kaluza-Klein compactification procedure of the more fundamental higher dimensional Lovelock gravity. We show that the Ellis wormhole is analytically supported by a gravitational theory with a non-trivial coupling to the Gauss-Bonnet term and we expand upon this notion by introducing higher derivative contributions of the scalar field. The extension of the gravitational theory does not yield any back-reacting component on the spacetime metric, which establishes the Ellis wormhole as a stealth solution in the generalized framework. We propose two simple mechanisms that dress the wormhole with an effective ADM mass. The first procedure is related to a conformal transformation of the metric which maps the theory to another Horndeski subclass, while the second one is inspired by the spontaneous scalarization effect on black holes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call