Abstract

For benthic fishes, breathing motion (e.g., oral, pharyngeal, and branchial movements) can result in detection by both prey and predators. Here we investigate the respiratory behavior of the angelshark Squatina japonica (Pisces: Squatiniformes: Squatinidae) to reveal how benthic elasmobranchs minimize this risk of detection. Sonographic analyses showed that the angelshark does not utilize water-pumping in the oropharyngeal cavity during respiration. This behavior is in contrast with most benthic fishes, which use the rhythmical expansion/contraction of the oropharyngeal cavity as the main pump to generate the respiratory water current. In the angelshark, breathing motion is restricted to the gill flaps located on the ventral side of the body. We suspect that the gill flaps function as an active pump to eject water through the gill slits. This respiratory mode allows conspicuous breathing motion to be concealed under the body, thereby increasing crypsis capacity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.